Matematika

Pertanyaan

tolong nomor 2 beserta cara
tolong nomor 2 beserta cara

2 Jawaban

  • [tex] \lim_{x \to \ \frac{ \pi }{4} } \frac{cos x - sin x}{2x - \frac{ \pi }{2} } = \lim_{x \to \ \frac{ \pi }{4} } \frac{sin ( \frac{ \pi }{2} - x) - sin x}{2x - \frac{ \pi }{2} } [/tex]
     
                                  [tex]= \lim_{x \to \ \frac{ \pi }{4} } \frac{2.cos \frac{1}{2}( \frac{ \pi }{2} - x + x) . sin \frac{1}{2}( \frac{ \pi }{2} - x - x) }{2x - \frac{ \pi }{2} } [/tex]
     
                                  [tex]= \lim_{x \to \ \frac{ \pi }{4} } \frac{2 .cos \frac{ \pi }{4} . sin \frac{1}{2} ( \frac{ \pi }{2} - 2x)}{- ( \frac{ \pi }{2} - 2x)}} [/tex]
     
                                  [tex]= \lim_{x \to \ \frac{ \pi }{4} } .2 cos \frac{ \pi }{4} . \frac{sin \frac{1}{2}( \frac{ \pi }{2} - 2x) }{- ( \frac{ \pi }{2} - 2x)} [/tex]
     
                                  [tex]= 2 .cos 45^{o} . - \frac{1}{2} [/tex]
                       
                                  = - cos 45°
     
                                  [tex]= - \frac{1}{2} \sqrt{2} ..... jawaban : b[/tex]
     
                                  
  • KALKULUS
    • Limit Fungsi Trigonometri


    Lim x→π/4 [(cos x - sin x) / (2x - π/2)]

    dengan L'Hospital (L'Hopital)
    = Lim x→π/4 [(- sin x - cos x) / 2]
    = (- sin 45° - cos 45°) / 2
    = (- ½√2 - ½√2) / 2
    = - √2 / 2
    = - ½√2 ← jwb