Buktikan bahwa: ∫ (3x - 5) dx / (x - 2)² = 3 ㏑ |x - 2| - 1 / (x - 2) + C
Matematika
Anonyme
Pertanyaan
Buktikan bahwa:
∫ (3x - 5) dx / (x - 2)² = 3 ㏑ |x - 2| - 1 / (x - 2) + C
∫ (3x - 5) dx / (x - 2)² = 3 ㏑ |x - 2| - 1 / (x - 2) + C
1 Jawaban
-
1. Jawaban DB45
set
u = x - 2 --> du= dx
x = u + 2
3x - 5 = 3 (u +2) - 5
3x - 5 = 3u + 1
∫(3x -5)(x-2)⁻² dx = ∫ (3u+1)(u)⁻² du
= ∫ (3 u⁻¹ + u⁻² ) du
= 3. ln |u| - u⁻¹ + c
= 3.ln |u| - 1/u + c
= 3 ln|x-2| - 1/(x-2) + c